How Much Do You Know About senior engineering team?
Practical AI Roadmap Workbook for Business Executives
A straightforward, no-jargon workbook showing where AI can actually help your business — and where it won’t.
Dev Guys Team — Smart thinking. Simple execution. Fast delivery.
The Need for This Workbook
In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t need to understand AI models or algorithms — just your workflows, data, and decisions. AI is simply a tool built on top of those foundations.
Best Way to Apply This Workbook
You can complete this alone or with your management team. The aim isn’t to finish quickly but to think clearly. By the end, you’ll have:
• Clear AI ideas that truly affect your P&L.
• Recognition of where AI adds no value — and that’s okay.
• A structured sequence of projects instead of random pilots.
Use it for insight, not just as a template. A good roadmap fits on one slide and makes sense to your CFO.
AI strategy equals good business logic, simply expressed.
Step 1 — Business First
Begin with Results, Not Technology
Most AI discussions begin with tools and tech questions like “Can we use ChatGPT here?” — that’s backward. Instead, begin with clear results that matter to your company.
Ask:
• What top objectives are driving your business now?
• Where are teams overworked or error-prone?
• Where do poor data or slow insights hold back progress?
It should improve something tangible — speed, accuracy, or cost. If an idea doesn’t tie to these, it’s not a roadmap — it’s just an experiment.
Skipping this step leads to wasted tools; doing it right builds power.
Step Two — Map the Workflows
Visualise the Process, Not the Platform
AI fits only once you understand the real workflow. Simply document every step from beginning to end.
Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice generated ? sent ? reminded ? paid.
Each step has three parts: inputs, actions, outputs. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.
Step 3 — Prioritise
Assess Opportunities with a Clear Framework
Evaluate AI ideas using a simple impact vs effort grid.
Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Reserve resources for strategic investments.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.
Consider risk: some actions AI are reversible, others are not.
Begin with low-risk, high-impact projects that build confidence.
Laying Strong Foundations
Data Quality Before AI Quality
Messy data ruins good AI; fix the base first. Clarity first, automation later.
Design Human-in-the-Loop by Default
AI should draft, suggest, or monitor — not act blindly. Build confidence before full automation.
Common Traps
Steer Clear of Predictable Failures
01. The Demo Illusion — excitement without strategy.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Full Automation Fantasy — imagining instant department replacement.
Choose disciplined execution over hype.
Partnering with Vendors and Developers
Frame problems, don’t build algorithms. State outcomes clearly — e.g., “reduce response time 40%”. Share messy data and edge cases so tech partners understand reality. Agree on success definitions and rollout phases.
Request real-world results, not sales pitches.
Evaluating AI Health
Indicators of a Balanced AI Plan
Your AI plan fits on one business slide.
Your focus remains on business, not tools.
Finance understands why these projects exist.
Quick AI Validation Guide
Before any project, confirm:
• Which business metric does this improve?
• Which workflow is involved, and can it be described simply?
• Do we have data and process clarity?
• Who owns the human oversight?
• What is the 3-month metric?
• If it fails, what valuable lesson remains?
Final Thought
AI should make your business calmer, clearer, and more controlled — not noisier or chaotic. A real roadmap is a disciplined sequence of high-value projects that strengthen your best people. When AI becomes part of your workflow quietly, it stops being hype — it becomes infrastructure.